DISTRICT PUBLIC SCHOOL & COLLEGE, KASUR

NOTES/HOME TASK/WORK SHEET FOR

CLASS:

8th

1

SUBJECT:

G. SCIENCE

2nd TERM SYLLABUS: UNIT (9,10,11,12)

PREPARE BY: Dr. Muhammad Arif Saleemi

SUPERVISION: MR. JA

MR. JAVED AKBAR (HM. Boys Wing)

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

Amazing Science 8th

Unit # 9

2

Lenses at work

Answers to Exercises in Unit 9

- 1. (a) Draw a convex lens and mark the following points on it. Optical centre, principal axis principal focus.
 - Ans. Please see Pupil's Book.
- (b) Explain the difference between a real and a virtual image.
- Ans. A real image can be made on a screen. An image that cannot be formed on a screen is called a virtual image, e.g. an image formed by a convex lens is real. An image formed by a concave lens is virtual.
- (c) Draw rays on the diagram to show how a concave lens can produce a virtual image.
- Ans. Individual work
- (d) Draw rays on the diagram to show how a real image can be formed by a convex lens.
- Ans. Individual work
- (e) When is a person said to be suffering from long-sightedness? Draw a diagram of the eye to show how this defect may be corrected by the use of a suitable type of lens.
- Ans. A person suffers from long-sightedness when in his eyes the distance between the lens and the retina is shorter than normal. Distant objects can be focused properly, but the point of focus for an object close to the eye is behind the retina. [Pupils to draw the diagram]

Unit # 10

Force and pressure

Answers to Exercises in Unit 10

- **1.** (a) Define the term pressure. How is pressure measured in the SI system of units?
- Ans. Scientists use the word pressure to describe how concentrated a force is. Pressure can be defined as the force exerted per unit area. If force is measured in newtons (N) and area in square metres, then pressure is measured in newtons per square metre (N/m^2) .

A pressure of 1 N/m² is also called 1 pascal (Pa).

If force is measured in newtons (N) and area in square metres, then pressure is measured in newtons per square metre $(\rm N/m^2)$

A pressure of 1 N/m² is also called 1 pascal (Pa).

 $\bullet \bullet \bullet \bullet \bullet \bullet$

- b) Explain how the pressure exerted on the surface of a rectangular block depends
- ans. If a force is concentrated on a small area it creates a high pressure. If the same force is spread over a larger area, its effect is less concentrated. The pressure is less. For example, a box has the same weight (200 N) no matter which way it is resting on the floor. However the pressure on the floor will change, depending on which side of the box is in contact with it.

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

 $\bullet \bullet \bullet \bullet \bullet \bullet$

- (c) The base of a rectangular vessel measures 10 cm x 18 cm. water is poured in to a depth of 4 cm. what is the pressure on the base?
- Ans. density of water is 1000 kg/m pressure = density x depth x g = 1000 x 4 x 10 = 40,000 Pa
- (d) On what does the pressure in liquids depend?
- Ans. The size of the force (measured in newtons)

The area of the surface it is pressing on (measured in square metres).

- (e) Explain the difference between force and pressure.
- Ans. pressure = force / area

If force is measured in newtons (N) and area in square metres, then pressure is measured in newtons per square metre (N/m^2)

- (f) In what ways is the pressure in gases the same as the pressure in liquids. How is it different?
- Ans. A gas behaves like a liquid in some ways. Its pressure acts in all directions. Its pressure decreases as you rise up through it. However, unlike a liquid, gases can be compressed.

(g) Why does the pressure in gases rise when they are compressed?

Ans. Gases can be compressed. This means that it is easier to stop a gas expanding than a liquid or a solid. But if a gas is enclosed in a sealed container, and is not allowed to expand, its pressure rises. This is because the molecules in a gas are always moving. They travel very fast, hitting each other and the sides of the container. If the temperature rises, the molecules move faster, and the pressure rises.

(h) Describe a siphon and explain how it works.

Ans. The siphon is a bent tube made of glass, rubber, or plastic, with its short arm dipping in the tank and its longer arm outside. To start the siphon it must first be filled with liquid. After this, the liquid will continue to run out as long as the end of the longer arm of the tube is below the level of the water in the tank. A siphon is used to remove water from a fish tank or other vessels, which cannot otherwise be easily emptied. It is generally thought that a siphon works by atmospheric pressure.

2. State two factors on which the pressure in a liquid depends.

Ans. The pressure of a liquid increases with depth and the density of the liquid petrol is less dense than water, so a container of petrol will exert less pressure than the same container full of water.

3. Describe an experiment to prove that air exerts pressure.

Ans. Experiment to prove that air exerts pressure:

Moisten a rubber sucker and press it on a smooth flat surface. Air is squeezed out from beneath it. The sucker is held tightly to the surface due to atmospheric pressure.

- 4. How would you show by an experiment that the pressure at a given point in a liquid is the same in all directions?
- Ans. The transmission of pressure in fluids can be demonstrated by a simple apparatus which consists of a bulb with small holes on all sides and a tightly fitted plunger. Fill the bulb with water and push the plunger. Water squirts equally from all the holes.

<u>Unit # 11</u> Expansion of solids and liquids

Answers to Exercises in Unit 11

 $\bullet \bullet \bullet$

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

1. Why do most solid expand on heating?

Ans. Substances expand when heated. When we heat a solid its molecules vibrate more rapidly. The vibrations take up more space. The molecules push each other further apart.

- **2.** How can you prove by an experiment that metals expand at different rates on heating?
- Ans. When rods of the same length but of different substances are heated through the same range of temperature, their expansions are not equal. Brass, for example, expands about one and a half times as much as steel. Aluminium expands twice as much as steel. An alloy of steel and nickel known as invar expands very little when its temperature rises.

3. What is a thermostat and what is it used for?

Ans. The bimetallic strip has many useful applications, one of which is the electric thermostat, which is a device for maintaining a steady temperature. The principle of a thermostat is used for controlling the temperature of a room warmed by an electric heater. Thermostats are also used to control the temperature of laundry irons, hot-water storage tanks, and fish aquaria.

4. What happens to liquids when they are heated?

Ans. Most liquids expand when heated, and they expand much more than solids.

5. How is the behavior of water different from other liquids when it is heated from 0 to 4 degrees Celsius?

Ans. Water behaves in a very unusual way when heated from 0 degrees Celsius. As its temperature rises from 0 to 4 degrees Celsius it actually contracts. However, from 4 degrees upwards it expands like any other liquid. This means that water takes up least space at 4 degrees Celsius. It has its greatest density at this temperature, and will sink through warmer or colder water around it.

6. Differentiate between the latent heat of vaporization and latent heat of fusion.

Ans. The heat energy absorbed when a liquid changes into a gas is called latent heat of vaporization. The energy is needed to pull the molecules apart so that they can move around freely as gas. The heat absorbed when a solid melts is called latent heat of fusion. Just as latent heat is taken in when water changes to vapour at the same temperature, heat is taken in when ice melts to form water as well. But in this case the latent heat is not so high.

7. How does evaporation cause cooling?

- Ans. To change from liquid to vapour, the liquid requires latent heat which it takes from a warm surface. The warm surface loses heat and cools down.
- 8. if pressure is applied, what happens to the melting point of a solid that
- (a) expands when heated?
- Ans. Its melting point is lowered.
- (b) contracts when heated?

Ans. Its melting point is raised.

Unit # 12

Electricity and magnetism

Answers to Exercises in Unit 12

 $\bullet \bullet \bullet$

1. (a) What is electromagnetism? When esa electromagnetism first eiscovered?

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

- Ans. In 1820, Oersted, a scientist from Denmark, showed that if a compass was placed below a wire carrying an electric current, the compass needle moved. This showed that a wire carrying an electric current has a magnetic field around it. This is called electromagnetism.
- (b) Where is the magnetic field of an electromagnet the strongest?
- Ans. The magnetic field is strongest close to the wire.
- (c) What is a solenoid? How can we find the direction of the field of a solenoid?
- Ans. When a current flows in a long coil of wire with many loops, the magnetic field looks just like that of a bar magnet. A coil like this is called a solenoid. The direction of the field of a solenoid can be found by using the fingers of your right hand to show the direction of the current in the loops of wire. Your right hand thumb shows the north pole of the solenoid.

(d) How does a bicycle dynamo generate electricity?

Ans. A current is produced when a wire is moved through a magnetic field. This is called the dynamo effect. It is just the opposite of the motor effect. The bicycle dynamo is an electrical generator. The energy which generates electricity in a bicycle dynamo comes from the cyclist. The food that the cyclist eats supplies the energy to turn the wheel which turns the magnet inside the coil of wire! When the magnet is lined up with the iron core there is a strong magnetic field in the coil of wire. As the magnet turns, the field gets weaker. It then gets stronger again but in the opposite direction. It is this changing magnetic field inside the coil which provides a voltage at the dynamo's terminals. The size of the voltage produced by the dynamo depends on the speed of the spinning magnet. As it spins faster the voltage increases so the light of the bicycle gets brighter. When the bicycle stops, the dynamo does not generate any electricity and the lights go out.

(e) How is electricity generated at na power station?

Ans. In power stations fuel such as coal, gas, oil, or energy from a nuclear reactor is used to heat water and turn it into steam. The steam then turns turbines connected to a.c. generators. These are called alternators. They work on the same principle as the bicycle dynamo. The voltage is produced by a magnet spinning inside fixed coils of wire. The power station uses a spinning electromagnet. By changing the current in the electromagnet the output from the alternator can be accurately controlled without slowing the turbines. The current for the electromagnet comes from a small d.c. generator which is also driven by the turbines.

(f) Name some output components and write their uses.

Ans. Output components and their uses:

Calculators: these devices use electronic circuits to solve mathematical problems quickly and accurately. Digital clocks: these devices use electronic timing circuits. These timers can be used in other devices. Central heating control units: these devices use programmable electronic circuits to allow easy control and are more reliable than mechanical switches. Computers: these devices are used for solving mathematical problems, business purposes and games. Electronic organs: these devices use electronic circuits to produce musical notes and rhythms. Satellite communications: these devices are used for international communications, military purposes, and satellite television.

Unit # 13

 $\bullet \bullet \bullet \bullet \bullet$

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

Modern technology and space travel

Answers to Exercises in Unit 13

- **1.** (a) What is telecommunication? Name various modes of telecommunication in use today.
- Ans. Sending and receiving messages over long distances is called telecommunication. The various modes of telecommunication used nowadays are: radio, television, satellite, wireless, telegraph, telephone, fax, and electronic mail.
- (b) What invention marked the beginning of modern telecommunication?
- Ans. The invention of the telegraph in the 1850s marked the beginning of modern telecommunication.

(c) How is sound carried from one telephone to another?

Ans. When you speak in the mouthpiece of a telephone, the sound waves of your voice make the diaphragm vibrate very fast. As the diaphragm moves inwards it pushes the carbon granules behind the plate close together. This allows an electric current to flow through the carbon granules easily. As the diaphragm moves outwards, the electric current becomes weaker. These changes in the electric current make the current flow to the earpiece of another telephone along a wire, where the above procedure is reversed and the sound waves can be heard.

(d) What are radio waves? How are sound waves carried nfrom the radio station to our radio sets?

Ans. Radio waves are electric signals that can travel over long distances through empty space. They travel at the speed of light (300,000 kilometres per second). At the radio station there is a transmitter, which is connected to an aerial. The transmitter makes a radio signal which the aerial sends out. The main part of the radio signal is called the carrier wave. As radio waves travel away from the transmitter, they grow weaker. They are made stronger by the amplifier in the receiver's radio set.

(e) How do we see pictures on our television sets?

Ans. A television camera turns light and sound waves into electric signals. It scans the pictures which appear on our television screen. The television aerial receives radio waves from the transmitter, which are turned into electric signals. A tuner selects a signal, which is then split into sound and picture signals.

(f) What is laser light?

Ans. A laser light is a concentrated beam of light which can travel long distances. It can also travel down glass tubes, carrying messages from one place to another.

(g) What is an optical fibre?

Ans. The thin glass tubes which carry laser light are called optical fibres. They can carry more messages than a wire.

(h) What is a computer? Describe the components of a computer system.

- Ans. A computer is a machine that can be used to do many different types of work. A computer is part of a computer system which needs an input device such as a keyboard or mouse, with which we can feed in data and programmes, and an output device or monitor which gives us the results on a screen.
 - (i) How is nuclear energy produced? Describe a nuclear reactor.

 $\bullet \bullet \bullet \bullet \bullet$

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

 $\bullet \bullet \bullet$

Amazing Science 8th

Ans. Nuclear energy is produced by nuclear fission. The nucleus of an atom of a metal called uranium can be split into two. Some of its neutrons escape and crash into other uranium atoms, causing them to split. This splitting process releases huge amounts of energy. A nuclear reactor: controlled nuclear fission is done in a special container called a nuclear reactor. Uranium is packed in stainless steel tubes. Inside the reactor there are a large number of fast moving neutrons which are absorbed by the uranium atoms and their nuclei are split to release energy. The heat given out during fission is carried away by a cooling fluid called coolant. The coolant becomes hot and is used to produce steam in a boiler. The steam is used to generate electricity in a generator.

2. Fill in the blanks.

Ans. (a) communication

(d) Alexander Graham Bell; 1876 (f) Guglielmo Marconi; 1895 (i) phosphor

(b) electricity(e) diaphragm(g) carrier wave(j) nuclear reactor

(h) television

(c) 1850s

7

3 Write short notes on the following.

Ans. **Rocket fuel:** Nowadays, space rockets use liquid oxygen as fuel. Most of the space inside the rocket is taken up by two storage tanks: one for the fuel and the other for the oxidizer. The fuel and the oxidizer are pumped into a combustion chamber, where they are set alight. The hot gases produced shoot backwards out of the tail nozzle and the rocket shoots forwards.

Spacesuits. Astronauts wear special clothes called spacesuits which are made of several layers of materials to protect them when they space walk. The outer layers protect them from flying particles. Oxygen for breathing is fed into the inner layer. The white surface reflects sunlight. Water flows through pipes in the suit to keep the astronaut cool. The backpack holds the oxygen supply as well as a radio with batteries.

Life support system: The spacecraft has a life support system which provides the astronauts with air, food, and water.

<u>Mission control:</u> The main communication centre for human flights in space is called the mission control, by which astronauts keep in contact with scientists on Earth.

<u>Re-entry:</u> The return of the spacecraft back to Earth is called re-entry. It is the most dangerous time for the astronauts. There is friction between the air and the spacecraft as it re-enters the atmosphere. The spacecraft is protected by a thick heat shield which prevents it from burning up.

Unit # 9 Lenses at work

8

MCQs								
(1) A lens can light.								
refract	refl	ect	break	dis	tort		[refr	act]
(2) lenses curve outwards.								
Concave	Flat	t	Plastic	Co	nvex		[Con	vex]
(3) Concave lenses curve .								
backwards		outwards	inwards		side	ways	[inw	ards]
(4) The central point of a lens is	call	ed the focus.						
teacher		tutor	principal		mai	n	[prin	cipal]
(5) The image formed by a lens	is re	al.						
convex	f	lat	concave		plas	stic	[conv	ex]
(6) Shortsight is corrected by w	earin	g lenses.						
plastic	d	liverging	convergi	ıg	flat		[diver	ging]
(7) The regulates the amount of	light	t entering the	eye.					
iris	corr	nea	lens	reti	na		[iri	s]
(8) A film camera uses a lens.								
concave	con	vex	prism	mag	gnifyi	ng	[<i>co</i>	nvex]
(9) A projector uses convex lens	ses.							
one		two	three			no		[<i>two</i>]
(10) In people, the point of clear	r focu	us is somewhe	ere behind	the ret	ina.			
long-sighted		short-sighte	ed	[long	-sight	ted]		
		T T • 4 11	10	Ŭ	-			

Unit # 10

Force and pressure

MCQs

(1) Pressure describes	s how concentr	ated the	is.				
weight	fo	orce	vo	olume	mass		[force]
(2) the load reduces p	ressure.						
Spreading	Μ	lixing	D	iluting	Rubbin	g	[Spreading]
(3) Pressure is affecte	d by the of the	liquid.					
opacity		density		weight	colour		[density]
(4) under pressure put	shes on every s	surface it	touc	ches.			
Solid		Gas			Liquid		[Liquid]
(5) A siphon works by	y pressure.						
Container		Water		solid	Atmos	pheric	Atmospheric
(6) In a siphon, the lic	quid will contin	nue to ru	n out	t as long as	the end c	of the lon	ger arm of the
tube is							
the level of the water	in the tank.						
alongside	above		belo	OW		[below]	
(7) Unlike a liquid, ca	an be compress	sed.					
(8) If force is concent	rated on a sma	ll area, it	t crea	ates a press	sure.		
Low	Normal		Hig	h		High	
(9) is equal to pressur	e multiplied b	y area.					
Force	Weight		Ma	SS		Force	
(10) An aerosol demo	onstrates how g	gases and	liqu	ids behave	under		
Burnen	Weight		Pres	ssure		pressu	e.

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

 \bigcirc

 $\bullet \bullet \bullet \bullet$

Unit # 11

Expansion of solids and liquids

MCQs

(1) Water when its ter	nperature rises	from 0 t	o 4°C				
expands		contract	ts	boils	evapor	ates	[<i>contract</i> s]
(2) As a gas expands,	the distance be	etween th	e mo	lecules grow	vs and its	s volume .	
increases		decreas	es	freezes	[incred	ises]	
(3) Overhead electric	wires are kept	loose bee	cause	they can bro	eak in ve	ery cold w	eather due to
Expansion	Current	Contraction			Contract	ion	
(4) When spirit evapo	(4) When spirit evaporates from hand a cooling sensation is felt. This happens because				ecause		
	heat is taken	from the	hanc	l which loses	s heat ar	nd cools de	own.
thermal	useful		late	nt		Latent	
(5) When paraffin wa	x solidifies, it						
breaks	expands		cont	tracts		Contra	cts
(6) When water freeze	es, it .						
expands	evaporates		Con	tracts		Expands	
(7) A thermostat is a c	levice used for	[.] maintair	ning a	steady.			
volume	quantity		tem	perature		Tempera	iture
(8) Relegation is a fac	ctor in the mak	ing of .					
Snowball	Ice		Vap	ours		Snowba	alls

Unit **# 12**

MCQs

(1) A solenoid is a long coil of	of wire wit	h m	any .								
threads			agnet		loc	ops	colo	urs		[lo	ops]
(2) The motor effect has been	used by e	engii	neers	to buil	d e	lectric	al.				
motors		en	ngines	5	cai	rs	mac	hines		[m	otors]
(3) A magnet moving near a	coil of wir	e ind	duces	a .							
solenoid	dynamo		volta	age		[vol	tage]				
(4) The bicycle is an electrica	l generato	r.									
handle	light		dyna	amo		gear	•				[dynamo]
(5) Homes take their power a	t volts.										
240	303		420			440				2	40
(6) Alternating voltage curren	nts can be	incr	eased	or dec	erea	used ea	asily usi	ng .			
pylons	sole	noid	S	transfo	orm	ners	genera	tors	[tran	sfor	mers]
(7) At a power station water i	s heated to	o ma	ıke w	hich tu	rns	s turbi	nes.				
current	gene	rato	r	transfo	orm	ner	steam		[stear	m]	
(8) The effect is the force wh	ich makes	a w	ire m	ove wł	nen	an ele	ectric cu	rrent flow	vs in it.		
Motor	Engi	ine		Strong	5		Curren	ıt	moto	r	
(9) The effect is the force wh	ich is prod	luce	d whe	en a wi	re i	is mov	ved in a	magnetic	field.		
motor			dyn	amo	5	soleno	id	generato	or	[dy]	ynamo]
(10) The electricity generated	l by power	· stat	tions	is distr	ibu	ited th	rough a	large netv	work of	f ca	bles called
direct current optic	e fibre		Natio	nal Gr	id	p	ower tu	bines	[Natio	onal	[Grid]

 $\bullet \bullet \bullet \bullet$

Amazing Science 8 th			10
Unit 9: Lenses at v	work		Worksheet 1
Name:		Da	te:
1. Write the names	s of the lenses shown below.		
$\left(\right)$			
3 Dram diagrams	to show how rays are refracte	ad her a long	
2. Diaw diagrams	to show now rays are renact	eu oy a iens.	

Photocopiable material

igodot

OXFORD

 \bullet

Prepared by Dr. Muhammad Arif Saleemi DPS Kasur

nazing Science 8 th		11
Unit 9: Lenses at work		Worksheet
Name:	Date:	
1. Match the optical instrument to	its name:	
Description of	the optical instrument	Name
a. used for showing slides on a s	creen; it consists of two convex lenses	the human eye
	of objects; it has a convex lens which , coated with light-sensitive chemicals	a film projector
c. takes still and video photograp electronic imaging sensor	phs by recording images using an	a microscope
d. a simple convex lens which ha an erect, magnified, and virtu	as a short focal length; it produces al image of the object	a film camera
e. used for studying very tiny ob a magnified, clear image of th		a telescope
f. used for studying heavenly bo lenses; rays coming from a he and small image of the object	avenly body form a real, inverted,	a magnifying gla
forms an inverted image of an light-sensitive cells, which sen	an body. It has a convex lens which ny object on a screen made up of nd messages to the brain through the ces an upright image of the object.	a digital camera
OXFORD	80	Photocopiable mater

Unit 9: Lenses at work				Worksheet 3
Name:			Date:	
1. (a) Draw rays to show the	kind of defect i	n short-sightedness:		
(b) Draw rays on the diagr	ram to show how	w a lens can be used	for its correction:	:
	¢			
2. (a) Draw rays to show the	kind of defect i	in long-sightedness:		
(b) Draw rays on the diag	ram to show how	w a lens can be used	for its correction.	
	Q			
Photocopiable material	-	81		OXFOR

		Workshe
Name:		Date:
1. Fill in the blanks to describ	e pressure:	
a. Scientists use the word	pressure to describe how	a force
b. Pressure can be defined	as the	exerted per unit area.
c. If a force is concentrated	i on a small area, it creates a	press
d. If the same force is spre	ad over a larger area, its pressure is	5
e. To calculate the size of j	pressure we can use the formula:	
pressure =	//	
f. A pressure of 1 pascal is	s equal to	
g. A concrete floor can wit	thstand a pressure of	
h. Soft sand can only supp	ort a pressure of	
	20 cm	5 cm 10 cm
a. base		
a. base b. side		
b. side c. back		
b. side c. back		2

Amazi	ing Science 8 th		14
	Unit 10: Force and pressure		Worksheet 2
	Name:		Date:
	1. Underline the correct word(s) to	e describe atmospheric pressure:	
	a. The Earth's atmosphere con	tains billion of tons of water vapo	ur / air.
	 At sea level, atmospheric pre pushing on every square cent 	ssure is equivalent to a force of al timeter / square metre.	bout 100,000 newtons
	c. The atmosphere behaves like	a solid / liquid in some ways.	
	d. Air pressure acts in all ways /	directions.	
	e. Air pressure decreases / incre	ases as you rise up through it.	
	f. Unlike a liquid, air can be de	pressed / compressed.	
	g. The molecules of a gas are al	ways moving / slowing down.	
	h. If a gas is enclosed in a sealed pressure rises.	d container and is not allowed to	expand / contract, its
	i The pressure in a gas is cause the sides of the container.	ed by the fast moving / slow movi	ing molecules colliding with
	 If a gas is compressed into a concentrated. 	smaller space, the molecules beco	ome more diluted /
	OXFORD	90	Photocopiable materia

0

 \cap

0

0

0

0

 \bullet

 $\bullet \bullet \bullet \bullet \bullet \bullet$

0

igodot

$\circ \circ \circ$		
A	mazing Science 8 th	15
	Unit 11: Expansion of solids and liquids	Worksheet 1
	one rr. Expansion of souris and inquires	W OLDSLICEL I
	Name:	Date:
	1. Write short answers to the following questions:	
	i. What is expansion?	
	ii. Why do substances expand on heating?	
	n. why do substances capane on nearing.	
	iii. What is invar?	
	iv. Which expands more, brass or steel?	
	v. What is a thermostat?	
	OXFORD 98	Photocopiable material
	repared by Dr. Wunammad Am Saleem IPS Kasur	

Amazing Science 8 th	16
Unit 11: Expansion of solids and liquids	Worksheet 2
Name: Date: _	
 Fill in the blanks to explain how the expansion of water is different from of Water behaves in a very way when it is heated from 0°C. As its temperature rises from 0 to 4°C, it actually Howe from 4°C upwards, it like any other liquid. This means the up least at 4°C. It has the greatest at a dimensional water around it. As soon as the water on the surface of a lake cools to 0°C, it Even if the lake freezes over, water at the bottom can still be at 	wer, hat water takes this temperature, to the bottom.
Fish can a severe winter by staying in this deeper, warms 2. Write the name of the term:	
Description	Term
 i. the heat energy that is absorbed when a liquid changes into a gas ii. the heat that is absorbed when a solid melts iii. the change from a liquid to a vapour iv. the effect of pressure on the melting point of ice and its refreezing 	
Photocopiable material 99	OXFORD

 \cap $\left(\right)$ $\left(\right)$

igodol

ullet

Amazing Science 8 th		17
Unit 12: Electricity and ma	ignetism	Worksheet 1
Name:		Date:
1. Fill in the blanks to expla	in the results of Oersted's experiments	:
a. The magnetic lines of	f force are in	_ around the wire.
b. The direction of the r	magnetic field is	if we look at the direction
of the flow of the cur	rent from + to	
c. If the direction of the	current is reversed, the	also reverses.
d. The magnetic field b	ecomesas t	he size of the current increases.
e. The magnetic field is	close to the	e wire.
OXFORD	108	Photocopiable material

^

0

0

ullet

Ò

Ì

Ò

0

Ì

0

 \bullet

Unit 12: Electricity and magnetism	n	Worksheet :
Name:		Date:
Write the terms for these descriptio	ons:	
Description		Term
 a. the force produced when an a wire in a magnetic field 	electric current flows in	
b. the current generated by a m	agnet moving near a coil of wire	
c. the current produced when a magnetic field	a wire is moved through a	
a device which uses electron mathematical problems quic		
e. a device that uses electronic	timing circuits	
f. a device that uses electronic musical notes	circuits to produce	
g. a device used for internation	al communication in space	
 the kind of plant used to gen power of water 	nerate electricity using the	
2. Match the problems of electricit	y generation with the sources:	
Sources of power generation	Proble	em5
a. using fossil fuels	do not need reservoirs to stor pollution, but their constructi	-
b. hydroelectric power plants	are relatively expensive and do not work at night or in bac weather	
c. wind turbines	They are not renewable. They took millions of years to make, and at some point in time will run out. They can cause serious environmental problems.	
d. solar panels	use a reservoir to store water, submerged; dams which are b people and destroy wild life; o	ouilt to store water, displace

ullet

0

 \bullet

19

 $\left(\right)$